{-# LANGUAGE CPP #-}
{-# LANGUAGE Rank2Types #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE FunctionalDependencies #-}
{-# LANGUAGE RoleAnnotations #-}
{-# OPTIONS_GHC -Wno-redundant-constraints #-}
module Control.Lens.Internal.Bazaar
( Bizarre(..)
, Bazaar(..), Bazaar'
, BazaarT(..), BazaarT'
, Bizarre1(..)
, Bazaar1(..), Bazaar1'
, BazaarT1(..), BazaarT1'
) where
import Prelude ()
import Control.Arrow as Arrow
import qualified Control.Category as C
import Control.Comonad
import Control.Lens.Internal.Prelude
import Control.Lens.Internal.Context
import Control.Lens.Internal.Indexed
import Data.Functor.Apply
import Data.Kind
import Data.Profunctor.Rep
class Profunctor p => Bizarre p w | w -> p where
bazaar :: Applicative f => p a (f b) -> w a b t -> f t
newtype Bazaar p a b t = Bazaar { forall (p :: * -> * -> *) a b t.
Bazaar p a b t
-> forall (f :: * -> *). Applicative f => p a (f b) -> f t
runBazaar :: forall f. Applicative f => p a (f b) -> f t }
type Bazaar' p a = Bazaar p a a
instance IndexedFunctor (Bazaar p) where
ifmap :: forall s t a b. (s -> t) -> Bazaar p a b s -> Bazaar p a b t
ifmap s -> t
f (Bazaar forall (f :: * -> *). Applicative f => p a (f b) -> f s
k) = (forall (f :: * -> *). Applicative f => p a (f b) -> f t)
-> Bazaar p a b t
forall (p :: * -> * -> *) a b t.
(forall (f :: * -> *). Applicative f => p a (f b) -> f t)
-> Bazaar p a b t
Bazaar ((s -> t) -> f s -> f t
forall a b. (a -> b) -> f a -> f b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap s -> t
f (f s -> f t) -> (p a (f b) -> f s) -> p a (f b) -> f t
forall b c a. (b -> c) -> (a -> b) -> a -> c
. p a (f b) -> f s
forall (f :: * -> *). Applicative f => p a (f b) -> f s
k)
{-# INLINE ifmap #-}
instance Conjoined p => IndexedComonad (Bazaar p) where
iextract :: forall a t. Bazaar p a a t -> t
iextract (Bazaar forall (f :: * -> *). Applicative f => p a (f a) -> f t
m) = Identity t -> t
forall a. Identity a -> a
runIdentity (Identity t -> t) -> Identity t -> t
forall a b. (a -> b) -> a -> b
$ p a (Identity a) -> Identity t
forall (f :: * -> *). Applicative f => p a (f a) -> f t
m ((a -> Identity a) -> p a (Identity a)
forall b c. (b -> c) -> p b c
forall (a :: * -> * -> *) b c. Arrow a => (b -> c) -> a b c
arr a -> Identity a
forall a. a -> Identity a
Identity)
{-# INLINE iextract #-}
iduplicate :: forall a c t b. Bazaar p a c t -> Bazaar p a b (Bazaar p b c t)
iduplicate (Bazaar forall (f :: * -> *). Applicative f => p a (f c) -> f t
m) = Compose (Bazaar p a b) (Bazaar p b c) t
-> Bazaar p a b (Bazaar p b c t)
forall {k1} {k2} (f :: k1 -> *) (g :: k2 -> k1) (a :: k2).
Compose f g a -> f (g a)
getCompose (Compose (Bazaar p a b) (Bazaar p b c) t
-> Bazaar p a b (Bazaar p b c t))
-> Compose (Bazaar p a b) (Bazaar p b c) t
-> Bazaar p a b (Bazaar p b c t)
forall a b. (a -> b) -> a -> b
$ p a (Compose (Bazaar p a b) (Bazaar p b c) c)
-> Compose (Bazaar p a b) (Bazaar p b c) t
forall (f :: * -> *). Applicative f => p a (f c) -> f t
m (Bazaar p a b (Bazaar p b c c)
-> Compose (Bazaar p a b) (Bazaar p b c) c
forall {k} {k1} (f :: k -> *) (g :: k1 -> k) (a :: k1).
f (g a) -> Compose f g a
Compose (Bazaar p a b (Bazaar p b c c)
-> Compose (Bazaar p a b) (Bazaar p b c) c)
-> p a (Bazaar p a b (Bazaar p b c c))
-> p a (Compose (Bazaar p a b) (Bazaar p b c) c)
forall a b c (q :: * -> * -> *).
Coercible c b =>
q b c -> p a b -> p a c
forall (p :: * -> * -> *) a b c (q :: * -> * -> *).
(Profunctor p, Coercible c b) =>
q b c -> p a b -> p a c
#. p b (Bazaar p b c c)
-> p (Bazaar p a b b) (Bazaar p a b (Bazaar p b c c))
forall (f :: * -> *) a b. Functor f => p a b -> p (f a) (f b)
forall (p :: * -> * -> *) (f :: * -> *) a b.
(Conjoined p, Functor f) =>
p a b -> p (f a) (f b)
distrib p b (Bazaar p b c c)
forall a b. p a (Bazaar p a b b)
forall (p :: * -> * -> *) (w :: * -> * -> * -> *) a b.
Sellable p w =>
p a (w a b b)
sell p (Bazaar p a b b) (Bazaar p a b (Bazaar p b c c))
-> p a (Bazaar p a b b) -> p a (Bazaar p a b (Bazaar p b c c))
forall b c a. p b c -> p a b -> p a c
forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
C.. p a (Bazaar p a b b)
forall a b. p a (Bazaar p a b b)
forall (p :: * -> * -> *) (w :: * -> * -> * -> *) a b.
Sellable p w =>
p a (w a b b)
sell)
{-# INLINE iduplicate #-}
instance Corepresentable p => Sellable p (Bazaar p) where
sell :: forall a b. p a (Bazaar p a b b)
sell = (Corep p a -> Bazaar p a b b) -> p a (Bazaar p a b b)
forall d c. (Corep p d -> c) -> p d c
forall (p :: * -> * -> *) d c.
Corepresentable p =>
(Corep p d -> c) -> p d c
cotabulate ((Corep p a -> Bazaar p a b b) -> p a (Bazaar p a b b))
-> (Corep p a -> Bazaar p a b b) -> p a (Bazaar p a b b)
forall a b. (a -> b) -> a -> b
$ \ Corep p a
w -> (forall (f :: * -> *). Applicative f => p a (f b) -> f b)
-> Bazaar p a b b
forall (p :: * -> * -> *) a b t.
(forall (f :: * -> *). Applicative f => p a (f b) -> f t)
-> Bazaar p a b t
Bazaar ((forall (f :: * -> *). Applicative f => p a (f b) -> f b)
-> Bazaar p a b b)
-> (forall (f :: * -> *). Applicative f => p a (f b) -> f b)
-> Bazaar p a b b
forall a b. (a -> b) -> a -> b
$ (p a (f b) -> Rep (->) (f b)) -> p a (f b) -> f b
forall d c. (d -> Rep (->) c) -> d -> c
forall (p :: * -> * -> *) d c.
Representable p =>
(d -> Rep p c) -> p d c
tabulate ((p a (f b) -> Rep (->) (f b)) -> p a (f b) -> f b)
-> (p a (f b) -> Rep (->) (f b)) -> p a (f b) -> f b
forall a b. (a -> b) -> a -> b
$ \p a (f b)
k -> f b -> Identity (f b)
forall a. a -> Identity a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (p a (f b) -> Corep p a -> f b
forall a b. p a b -> Corep p a -> b
forall (p :: * -> * -> *) (f :: * -> *) a b.
Cosieve p f =>
p a b -> f a -> b
cosieve p a (f b)
k Corep p a
w)
{-# INLINE sell #-}
instance Profunctor p => Bizarre p (Bazaar p) where
bazaar :: forall (f :: * -> *) a b t.
Applicative f =>
p a (f b) -> Bazaar p a b t -> f t
bazaar p a (f b)
g (Bazaar forall (f :: * -> *). Applicative f => p a (f b) -> f t
f) = p a (f b) -> f t
forall (f :: * -> *). Applicative f => p a (f b) -> f t
f p a (f b)
g
{-# INLINE bazaar #-}
instance Functor (Bazaar p a b) where
fmap :: forall a b. (a -> b) -> Bazaar p a b a -> Bazaar p a b b
fmap = (a -> b) -> Bazaar p a b a -> Bazaar p a b b
forall s t a b. (s -> t) -> Bazaar p a b s -> Bazaar p a b t
forall (w :: * -> * -> * -> *) s t a b.
IndexedFunctor w =>
(s -> t) -> w a b s -> w a b t
ifmap
{-# INLINE fmap #-}
a
x <$ :: forall a b. a -> Bazaar p a b b -> Bazaar p a b a
<$ Bazaar forall (f :: * -> *). Applicative f => p a (f b) -> f b
k = (forall (f :: * -> *). Applicative f => p a (f b) -> f a)
-> Bazaar p a b a
forall (p :: * -> * -> *) a b t.
(forall (f :: * -> *). Applicative f => p a (f b) -> f t)
-> Bazaar p a b t
Bazaar ( (a
x a -> f b -> f a
forall a b. a -> f b -> f a
forall (f :: * -> *) a b. Functor f => a -> f b -> f a
<$) (f b -> f a) -> (p a (f b) -> f b) -> p a (f b) -> f a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. p a (f b) -> f b
forall (f :: * -> *). Applicative f => p a (f b) -> f b
k )
{-# INLINE (<$) #-}
instance Apply (Bazaar p a b) where
<.> :: forall a b.
Bazaar p a b (a -> b) -> Bazaar p a b a -> Bazaar p a b b
(<.>) = Bazaar p a b (a -> b) -> Bazaar p a b a -> Bazaar p a b b
forall a b.
Bazaar p a b (a -> b) -> Bazaar p a b a -> Bazaar p a b b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
(<*>)
{-# INLINE (<.>) #-}
.> :: forall a b. Bazaar p a b a -> Bazaar p a b b -> Bazaar p a b b
(.>) = Bazaar p a b a -> Bazaar p a b b -> Bazaar p a b b
forall a b. Bazaar p a b a -> Bazaar p a b b -> Bazaar p a b b
forall (f :: * -> *) a b. Applicative f => f a -> f b -> f b
(*>)
{-# INLINE (.>) #-}
<. :: forall a b. Bazaar p a b a -> Bazaar p a b b -> Bazaar p a b a
(<.) = Bazaar p a b a -> Bazaar p a b b -> Bazaar p a b a
forall a b. Bazaar p a b a -> Bazaar p a b b -> Bazaar p a b a
forall (f :: * -> *) a b. Applicative f => f a -> f b -> f a
(<*)
{-# INLINE (<.) #-}
instance Applicative (Bazaar p a b) where
pure :: forall a. a -> Bazaar p a b a
pure a
a = (forall (f :: * -> *). Applicative f => p a (f b) -> f a)
-> Bazaar p a b a
forall (p :: * -> * -> *) a b t.
(forall (f :: * -> *). Applicative f => p a (f b) -> f t)
-> Bazaar p a b t
Bazaar ((forall (f :: * -> *). Applicative f => p a (f b) -> f a)
-> Bazaar p a b a)
-> (forall (f :: * -> *). Applicative f => p a (f b) -> f a)
-> Bazaar p a b a
forall a b. (a -> b) -> a -> b
$ \p a (f b)
_ -> a -> f a
forall a. a -> f a
forall (f :: * -> *) a. Applicative f => a -> f a
pure a
a
{-# INLINE pure #-}
Bazaar forall (f :: * -> *). Applicative f => p a (f b) -> f (a -> b)
mf <*> :: forall a b.
Bazaar p a b (a -> b) -> Bazaar p a b a -> Bazaar p a b b
<*> Bazaar forall (f :: * -> *). Applicative f => p a (f b) -> f a
ma = (forall (f :: * -> *). Applicative f => p a (f b) -> f b)
-> Bazaar p a b b
forall (p :: * -> * -> *) a b t.
(forall (f :: * -> *). Applicative f => p a (f b) -> f t)
-> Bazaar p a b t
Bazaar ((forall (f :: * -> *). Applicative f => p a (f b) -> f b)
-> Bazaar p a b b)
-> (forall (f :: * -> *). Applicative f => p a (f b) -> f b)
-> Bazaar p a b b
forall a b. (a -> b) -> a -> b
$ \ p a (f b)
pafb -> p a (f b) -> f (a -> b)
forall (f :: * -> *). Applicative f => p a (f b) -> f (a -> b)
mf p a (f b)
pafb f (a -> b) -> f a -> f b
forall a b. f (a -> b) -> f a -> f b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> p a (f b) -> f a
forall (f :: * -> *). Applicative f => p a (f b) -> f a
ma p a (f b)
pafb
{-# INLINE (<*>) #-}
#if MIN_VERSION_base(4,10,0)
liftA2 :: forall a b c.
(a -> b -> c) -> Bazaar p a b a -> Bazaar p a b b -> Bazaar p a b c
liftA2 a -> b -> c
f (Bazaar forall (f :: * -> *). Applicative f => p a (f b) -> f a
mx) (Bazaar forall (f :: * -> *). Applicative f => p a (f b) -> f b
my) = (forall (f :: * -> *). Applicative f => p a (f b) -> f c)
-> Bazaar p a b c
forall (p :: * -> * -> *) a b t.
(forall (f :: * -> *). Applicative f => p a (f b) -> f t)
-> Bazaar p a b t
Bazaar ((forall (f :: * -> *). Applicative f => p a (f b) -> f c)
-> Bazaar p a b c)
-> (forall (f :: * -> *). Applicative f => p a (f b) -> f c)
-> Bazaar p a b c
forall a b. (a -> b) -> a -> b
$ \p a (f b)
pafb -> (a -> b -> c) -> f a -> f b -> f c
forall a b c. (a -> b -> c) -> f a -> f b -> f c
forall (f :: * -> *) a b c.
Applicative f =>
(a -> b -> c) -> f a -> f b -> f c
liftA2 a -> b -> c
f (p a (f b) -> f a
forall (f :: * -> *). Applicative f => p a (f b) -> f a
mx p a (f b)
pafb) (p a (f b) -> f b
forall (f :: * -> *). Applicative f => p a (f b) -> f b
my p a (f b)
pafb)
{-# INLINE liftA2 #-}
#endif
Bazaar forall (f :: * -> *). Applicative f => p a (f b) -> f a
mx *> :: forall a b. Bazaar p a b a -> Bazaar p a b b -> Bazaar p a b b
*> Bazaar forall (f :: * -> *). Applicative f => p a (f b) -> f b
my = (forall (f :: * -> *). Applicative f => p a (f b) -> f b)
-> Bazaar p a b b
forall (p :: * -> * -> *) a b t.
(forall (f :: * -> *). Applicative f => p a (f b) -> f t)
-> Bazaar p a b t
Bazaar ((forall (f :: * -> *). Applicative f => p a (f b) -> f b)
-> Bazaar p a b b)
-> (forall (f :: * -> *). Applicative f => p a (f b) -> f b)
-> Bazaar p a b b
forall a b. (a -> b) -> a -> b
$ \p a (f b)
pafb -> p a (f b) -> f a
forall (f :: * -> *). Applicative f => p a (f b) -> f a
mx p a (f b)
pafb f a -> f b -> f b
forall a b. f a -> f b -> f b
forall (f :: * -> *) a b. Applicative f => f a -> f b -> f b
*> p a (f b) -> f b
forall (f :: * -> *). Applicative f => p a (f b) -> f b
my p a (f b)
pafb
{-# INLINE (*>) #-}
Bazaar forall (f :: * -> *). Applicative f => p a (f b) -> f a
mx <* :: forall a b. Bazaar p a b a -> Bazaar p a b b -> Bazaar p a b a
<* Bazaar forall (f :: * -> *). Applicative f => p a (f b) -> f b
my = (forall (f :: * -> *). Applicative f => p a (f b) -> f a)
-> Bazaar p a b a
forall (p :: * -> * -> *) a b t.
(forall (f :: * -> *). Applicative f => p a (f b) -> f t)
-> Bazaar p a b t
Bazaar ((forall (f :: * -> *). Applicative f => p a (f b) -> f a)
-> Bazaar p a b a)
-> (forall (f :: * -> *). Applicative f => p a (f b) -> f a)
-> Bazaar p a b a
forall a b. (a -> b) -> a -> b
$ \p a (f b)
pafb -> p a (f b) -> f a
forall (f :: * -> *). Applicative f => p a (f b) -> f a
mx p a (f b)
pafb f a -> f b -> f a
forall a b. f a -> f b -> f a
forall (f :: * -> *) a b. Applicative f => f a -> f b -> f a
<* p a (f b) -> f b
forall (f :: * -> *). Applicative f => p a (f b) -> f b
my p a (f b)
pafb
{-# INLINE (<*) #-}
instance (a ~ b, Conjoined p) => Comonad (Bazaar p a b) where
extract :: forall a. Bazaar p a b a -> a
extract = Bazaar p a a a -> a
Bazaar p a b a -> a
forall a t. Bazaar p a a t -> t
forall (w :: * -> * -> * -> *) a t.
IndexedComonad w =>
w a a t -> t
iextract
{-# INLINE extract #-}
duplicate :: forall a. Bazaar p a b a -> Bazaar p a b (Bazaar p a b a)
duplicate = Bazaar p a b a -> Bazaar p a b (Bazaar p a b a)
Bazaar p a b a -> Bazaar p a b (Bazaar p b b a)
forall a c t b. Bazaar p a c t -> Bazaar p a b (Bazaar p b c t)
forall (w :: * -> * -> * -> *) a c t b.
IndexedComonad w =>
w a c t -> w a b (w b c t)
iduplicate
{-# INLINE duplicate #-}
instance (a ~ b, Conjoined p) => ComonadApply (Bazaar p a b) where
<@> :: forall a b.
Bazaar p a b (a -> b) -> Bazaar p a b a -> Bazaar p a b b
(<@>) = Bazaar p a b (a -> b) -> Bazaar p a b a -> Bazaar p a b b
forall a b.
Bazaar p a b (a -> b) -> Bazaar p a b a -> Bazaar p a b b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
(<*>)
{-# INLINE (<@>) #-}
@> :: forall a b. Bazaar p a b a -> Bazaar p a b b -> Bazaar p a b b
(@>) = Bazaar p a b a -> Bazaar p a b b -> Bazaar p a b b
forall a b. Bazaar p a b a -> Bazaar p a b b -> Bazaar p a b b
forall (f :: * -> *) a b. Applicative f => f a -> f b -> f b
(*>)
{-# INLINE (@>) #-}
<@ :: forall a b. Bazaar p a b a -> Bazaar p a b b -> Bazaar p a b a
(<@) = Bazaar p a b a -> Bazaar p a b b -> Bazaar p a b a
forall a b. Bazaar p a b a -> Bazaar p a b b -> Bazaar p a b a
forall (f :: * -> *) a b. Applicative f => f a -> f b -> f a
(<*)
{-# INLINE (<@) #-}
newtype BazaarT p (g :: Type -> Type) a b t = BazaarT { forall (p :: * -> * -> *) (g :: * -> *) a b t.
BazaarT p g a b t
-> forall (f :: * -> *). Applicative f => p a (f b) -> f t
runBazaarT :: forall f. Applicative f => p a (f b) -> f t }
type role BazaarT representational nominal nominal nominal nominal
type BazaarT' p g a = BazaarT p g a a
instance IndexedFunctor (BazaarT p g) where
ifmap :: forall s t a b. (s -> t) -> BazaarT p g a b s -> BazaarT p g a b t
ifmap s -> t
f (BazaarT forall (f :: * -> *). Applicative f => p a (f b) -> f s
k) = (forall (f :: * -> *). Applicative f => p a (f b) -> f t)
-> BazaarT p g a b t
forall (p :: * -> * -> *) (g :: * -> *) a b t.
(forall (f :: * -> *). Applicative f => p a (f b) -> f t)
-> BazaarT p g a b t
BazaarT ((s -> t) -> f s -> f t
forall a b. (a -> b) -> f a -> f b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap s -> t
f (f s -> f t) -> (p a (f b) -> f s) -> p a (f b) -> f t
forall b c a. (b -> c) -> (a -> b) -> a -> c
. p a (f b) -> f s
forall (f :: * -> *). Applicative f => p a (f b) -> f s
k)
{-# INLINE ifmap #-}
instance Conjoined p => IndexedComonad (BazaarT p g) where
iextract :: forall a t. BazaarT p g a a t -> t
iextract (BazaarT forall (f :: * -> *). Applicative f => p a (f a) -> f t
m) = Identity t -> t
forall a. Identity a -> a
runIdentity (Identity t -> t) -> Identity t -> t
forall a b. (a -> b) -> a -> b
$ p a (Identity a) -> Identity t
forall (f :: * -> *). Applicative f => p a (f a) -> f t
m ((a -> Identity a) -> p a (Identity a)
forall b c. (b -> c) -> p b c
forall (a :: * -> * -> *) b c. Arrow a => (b -> c) -> a b c
arr a -> Identity a
forall a. a -> Identity a
Identity)
{-# INLINE iextract #-}
iduplicate :: forall a c t b.
BazaarT p g a c t -> BazaarT p g a b (BazaarT p g b c t)
iduplicate (BazaarT forall (f :: * -> *). Applicative f => p a (f c) -> f t
m) = Compose (BazaarT p g a b) (BazaarT p g b c) t
-> BazaarT p g a b (BazaarT p g b c t)
forall {k1} {k2} (f :: k1 -> *) (g :: k2 -> k1) (a :: k2).
Compose f g a -> f (g a)
getCompose (Compose (BazaarT p g a b) (BazaarT p g b c) t
-> BazaarT p g a b (BazaarT p g b c t))
-> Compose (BazaarT p g a b) (BazaarT p g b c) t
-> BazaarT p g a b (BazaarT p g b c t)
forall a b. (a -> b) -> a -> b
$ p a (Compose (BazaarT p g a b) (BazaarT p g b c) c)
-> Compose (BazaarT p g a b) (BazaarT p g b c) t
forall (f :: * -> *). Applicative f => p a (f c) -> f t
m (BazaarT p g a b (BazaarT p g b c c)
-> Compose (BazaarT p g a b) (BazaarT p g b c) c
forall {k} {k1} (f :: k -> *) (g :: k1 -> k) (a :: k1).
f (g a) -> Compose f g a
Compose (BazaarT p g a b (BazaarT p g b c c)
-> Compose (BazaarT p g a b) (BazaarT p g b c) c)
-> p a (BazaarT p g a b (BazaarT p g b c c))
-> p a (Compose (BazaarT p g a b) (BazaarT p g b c) c)
forall a b c (q :: * -> * -> *).
Coercible c b =>
q b c -> p a b -> p a c
forall (p :: * -> * -> *) a b c (q :: * -> * -> *).
(Profunctor p, Coercible c b) =>
q b c -> p a b -> p a c
#. p b (BazaarT p g b c c)
-> p (BazaarT p g a b b) (BazaarT p g a b (BazaarT p g b c c))
forall (f :: * -> *) a b. Functor f => p a b -> p (f a) (f b)
forall (p :: * -> * -> *) (f :: * -> *) a b.
(Conjoined p, Functor f) =>
p a b -> p (f a) (f b)
distrib p b (BazaarT p g b c c)
forall a b. p a (BazaarT p g a b b)
forall (p :: * -> * -> *) (w :: * -> * -> * -> *) a b.
Sellable p w =>
p a (w a b b)
sell p (BazaarT p g a b b) (BazaarT p g a b (BazaarT p g b c c))
-> p a (BazaarT p g a b b)
-> p a (BazaarT p g a b (BazaarT p g b c c))
forall b c a. p b c -> p a b -> p a c
forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
C.. p a (BazaarT p g a b b)
forall a b. p a (BazaarT p g a b b)
forall (p :: * -> * -> *) (w :: * -> * -> * -> *) a b.
Sellable p w =>
p a (w a b b)
sell)
{-# INLINE iduplicate #-}
instance Corepresentable p => Sellable p (BazaarT p g) where
sell :: forall a b. p a (BazaarT p g a b b)
sell = (Corep p a -> BazaarT p g a b b) -> p a (BazaarT p g a b b)
forall d c. (Corep p d -> c) -> p d c
forall (p :: * -> * -> *) d c.
Corepresentable p =>
(Corep p d -> c) -> p d c
cotabulate ((Corep p a -> BazaarT p g a b b) -> p a (BazaarT p g a b b))
-> (Corep p a -> BazaarT p g a b b) -> p a (BazaarT p g a b b)
forall a b. (a -> b) -> a -> b
$ \ Corep p a
w -> (forall (f :: * -> *). Applicative f => p a (f b) -> f b)
-> BazaarT p g a b b
forall (p :: * -> * -> *) (g :: * -> *) a b t.
(forall (f :: * -> *). Applicative f => p a (f b) -> f t)
-> BazaarT p g a b t
BazaarT (p a (f b) -> Corep p a -> f b
forall a b. p a b -> Corep p a -> b
forall (p :: * -> * -> *) (f :: * -> *) a b.
Cosieve p f =>
p a b -> f a -> b
`cosieve` Corep p a
w)
{-# INLINE sell #-}
instance Profunctor p => Bizarre p (BazaarT p g) where
bazaar :: forall (f :: * -> *) a b t.
Applicative f =>
p a (f b) -> BazaarT p g a b t -> f t
bazaar p a (f b)
g (BazaarT forall (f :: * -> *). Applicative f => p a (f b) -> f t
f) = p a (f b) -> f t
forall (f :: * -> *). Applicative f => p a (f b) -> f t
f p a (f b)
g
{-# INLINE bazaar #-}
instance Functor (BazaarT p g a b) where
fmap :: forall a b. (a -> b) -> BazaarT p g a b a -> BazaarT p g a b b
fmap = (a -> b) -> BazaarT p g a b a -> BazaarT p g a b b
forall s t a b. (s -> t) -> BazaarT p g a b s -> BazaarT p g a b t
forall (w :: * -> * -> * -> *) s t a b.
IndexedFunctor w =>
(s -> t) -> w a b s -> w a b t
ifmap
{-# INLINE fmap #-}
a
x <$ :: forall a b. a -> BazaarT p g a b b -> BazaarT p g a b a
<$ BazaarT forall (f :: * -> *). Applicative f => p a (f b) -> f b
k = (forall (f :: * -> *). Applicative f => p a (f b) -> f a)
-> BazaarT p g a b a
forall (p :: * -> * -> *) (g :: * -> *) a b t.
(forall (f :: * -> *). Applicative f => p a (f b) -> f t)
-> BazaarT p g a b t
BazaarT ( (a
x a -> f b -> f a
forall a b. a -> f b -> f a
forall (f :: * -> *) a b. Functor f => a -> f b -> f a
<$) (f b -> f a) -> (p a (f b) -> f b) -> p a (f b) -> f a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. p a (f b) -> f b
forall (f :: * -> *). Applicative f => p a (f b) -> f b
k )
{-# INLINE (<$) #-}
instance Apply (BazaarT p g a b) where
<.> :: forall a b.
BazaarT p g a b (a -> b) -> BazaarT p g a b a -> BazaarT p g a b b
(<.>) = BazaarT p g a b (a -> b) -> BazaarT p g a b a -> BazaarT p g a b b
forall a b.
BazaarT p g a b (a -> b) -> BazaarT p g a b a -> BazaarT p g a b b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
(<*>)
{-# INLINE (<.>) #-}
.> :: forall a b.
BazaarT p g a b a -> BazaarT p g a b b -> BazaarT p g a b b
(.>) = BazaarT p g a b a -> BazaarT p g a b b -> BazaarT p g a b b
forall a b.
BazaarT p g a b a -> BazaarT p g a b b -> BazaarT p g a b b
forall (f :: * -> *) a b. Applicative f => f a -> f b -> f b
(*>)
{-# INLINE (.>) #-}
<. :: forall a b.
BazaarT p g a b a -> BazaarT p g a b b -> BazaarT p g a b a
(<.) = BazaarT p g a b a -> BazaarT p g a b b -> BazaarT p g a b a
forall a b.
BazaarT p g a b a -> BazaarT p g a b b -> BazaarT p g a b a
forall (f :: * -> *) a b. Applicative f => f a -> f b -> f a
(<*)
{-# INLINE (<.) #-}
instance Applicative (BazaarT p g a b) where
pure :: forall a. a -> BazaarT p g a b a
pure a
a = (forall (f :: * -> *). Applicative f => p a (f b) -> f a)
-> BazaarT p g a b a
forall (p :: * -> * -> *) (g :: * -> *) a b t.
(forall (f :: * -> *). Applicative f => p a (f b) -> f t)
-> BazaarT p g a b t
BazaarT ((forall (f :: * -> *). Applicative f => p a (f b) -> f a)
-> BazaarT p g a b a)
-> (forall (f :: * -> *). Applicative f => p a (f b) -> f a)
-> BazaarT p g a b a
forall a b. (a -> b) -> a -> b
$ (p a (f b) -> Rep (->) (f a)) -> p a (f b) -> f a
forall d c. (d -> Rep (->) c) -> d -> c
forall (p :: * -> * -> *) d c.
Representable p =>
(d -> Rep p c) -> p d c
tabulate ((p a (f b) -> Rep (->) (f a)) -> p a (f b) -> f a)
-> (p a (f b) -> Rep (->) (f a)) -> p a (f b) -> f a
forall a b. (a -> b) -> a -> b
$ \p a (f b)
_ -> f a -> Identity (f a)
forall a. a -> Identity a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (a -> f a
forall a. a -> f a
forall (f :: * -> *) a. Applicative f => a -> f a
pure a
a)
{-# INLINE pure #-}
BazaarT forall (f :: * -> *). Applicative f => p a (f b) -> f (a -> b)
mf <*> :: forall a b.
BazaarT p g a b (a -> b) -> BazaarT p g a b a -> BazaarT p g a b b
<*> BazaarT forall (f :: * -> *). Applicative f => p a (f b) -> f a
ma = (forall (f :: * -> *). Applicative f => p a (f b) -> f b)
-> BazaarT p g a b b
forall (p :: * -> * -> *) (g :: * -> *) a b t.
(forall (f :: * -> *). Applicative f => p a (f b) -> f t)
-> BazaarT p g a b t
BazaarT ((forall (f :: * -> *). Applicative f => p a (f b) -> f b)
-> BazaarT p g a b b)
-> (forall (f :: * -> *). Applicative f => p a (f b) -> f b)
-> BazaarT p g a b b
forall a b. (a -> b) -> a -> b
$ \ p a (f b)
pafb -> p a (f b) -> f (a -> b)
forall (f :: * -> *). Applicative f => p a (f b) -> f (a -> b)
mf p a (f b)
pafb f (a -> b) -> f a -> f b
forall a b. f (a -> b) -> f a -> f b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> p a (f b) -> f a
forall (f :: * -> *). Applicative f => p a (f b) -> f a
ma p a (f b)
pafb
{-# INLINE (<*>) #-}
#if MIN_VERSION_base(4,10,0)
liftA2 :: forall a b c.
(a -> b -> c)
-> BazaarT p g a b a -> BazaarT p g a b b -> BazaarT p g a b c
liftA2 a -> b -> c
f (BazaarT forall (f :: * -> *). Applicative f => p a (f b) -> f a
mx) (BazaarT forall (f :: * -> *). Applicative f => p a (f b) -> f b
my) = (forall (f :: * -> *). Applicative f => p a (f b) -> f c)
-> BazaarT p g a b c
forall (p :: * -> * -> *) (g :: * -> *) a b t.
(forall (f :: * -> *). Applicative f => p a (f b) -> f t)
-> BazaarT p g a b t
BazaarT ((forall (f :: * -> *). Applicative f => p a (f b) -> f c)
-> BazaarT p g a b c)
-> (forall (f :: * -> *). Applicative f => p a (f b) -> f c)
-> BazaarT p g a b c
forall a b. (a -> b) -> a -> b
$ \p a (f b)
pafb -> (a -> b -> c) -> f a -> f b -> f c
forall a b c. (a -> b -> c) -> f a -> f b -> f c
forall (f :: * -> *) a b c.
Applicative f =>
(a -> b -> c) -> f a -> f b -> f c
liftA2 a -> b -> c
f (p a (f b) -> f a
forall (f :: * -> *). Applicative f => p a (f b) -> f a
mx p a (f b)
pafb) (p a (f b) -> f b
forall (f :: * -> *). Applicative f => p a (f b) -> f b
my p a (f b)
pafb)
{-# INLINE liftA2 #-}
#endif
BazaarT forall (f :: * -> *). Applicative f => p a (f b) -> f a
mf *> :: forall a b.
BazaarT p g a b a -> BazaarT p g a b b -> BazaarT p g a b b
*> BazaarT forall (f :: * -> *). Applicative f => p a (f b) -> f b
ma = (forall (f :: * -> *). Applicative f => p a (f b) -> f b)
-> BazaarT p g a b b
forall (p :: * -> * -> *) (g :: * -> *) a b t.
(forall (f :: * -> *). Applicative f => p a (f b) -> f t)
-> BazaarT p g a b t
BazaarT ((forall (f :: * -> *). Applicative f => p a (f b) -> f b)
-> BazaarT p g a b b)
-> (forall (f :: * -> *). Applicative f => p a (f b) -> f b)
-> BazaarT p g a b b
forall a b. (a -> b) -> a -> b
$ \ p a (f b)
pafb -> p a (f b) -> f a
forall (f :: * -> *). Applicative f => p a (f b) -> f a
mf p a (f b)
pafb f a -> f b -> f b
forall a b. f a -> f b -> f b
forall (f :: * -> *) a b. Applicative f => f a -> f b -> f b
*> p a (f b) -> f b
forall (f :: * -> *). Applicative f => p a (f b) -> f b
ma p a (f b)
pafb
{-# INLINE (*>) #-}
BazaarT forall (f :: * -> *). Applicative f => p a (f b) -> f a
mf <* :: forall a b.
BazaarT p g a b a -> BazaarT p g a b b -> BazaarT p g a b a
<* BazaarT forall (f :: * -> *). Applicative f => p a (f b) -> f b
ma = (forall (f :: * -> *). Applicative f => p a (f b) -> f a)
-> BazaarT p g a b a
forall (p :: * -> * -> *) (g :: * -> *) a b t.
(forall (f :: * -> *). Applicative f => p a (f b) -> f t)
-> BazaarT p g a b t
BazaarT ((forall (f :: * -> *). Applicative f => p a (f b) -> f a)
-> BazaarT p g a b a)
-> (forall (f :: * -> *). Applicative f => p a (f b) -> f a)
-> BazaarT p g a b a
forall a b. (a -> b) -> a -> b
$ \ p a (f b)
pafb -> p a (f b) -> f a
forall (f :: * -> *). Applicative f => p a (f b) -> f a
mf p a (f b)
pafb f a -> f b -> f a
forall a b. f a -> f b -> f a
forall (f :: * -> *) a b. Applicative f => f a -> f b -> f a
<* p a (f b) -> f b
forall (f :: * -> *). Applicative f => p a (f b) -> f b
ma p a (f b)
pafb
{-# INLINE (<*) #-}
instance (a ~ b, Conjoined p) => Comonad (BazaarT p g a b) where
extract :: forall a. BazaarT p g a b a -> a
extract = BazaarT p g a a a -> a
BazaarT p g a b a -> a
forall a t. BazaarT p g a a t -> t
forall (w :: * -> * -> * -> *) a t.
IndexedComonad w =>
w a a t -> t
iextract
{-# INLINE extract #-}
duplicate :: forall a. BazaarT p g a b a -> BazaarT p g a b (BazaarT p g a b a)
duplicate = BazaarT p g a b a -> BazaarT p g a b (BazaarT p g a b a)
BazaarT p g a b a -> BazaarT p g a b (BazaarT p g b b a)
forall a c t b.
BazaarT p g a c t -> BazaarT p g a b (BazaarT p g b c t)
forall (w :: * -> * -> * -> *) a c t b.
IndexedComonad w =>
w a c t -> w a b (w b c t)
iduplicate
{-# INLINE duplicate #-}
instance (a ~ b, Conjoined p) => ComonadApply (BazaarT p g a b) where
<@> :: forall a b.
BazaarT p g a b (a -> b) -> BazaarT p g a b a -> BazaarT p g a b b
(<@>) = BazaarT p g a b (a -> b) -> BazaarT p g a b a -> BazaarT p g a b b
forall a b.
BazaarT p g a b (a -> b) -> BazaarT p g a b a -> BazaarT p g a b b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
(<*>)
{-# INLINE (<@>) #-}
@> :: forall a b.
BazaarT p g a b a -> BazaarT p g a b b -> BazaarT p g a b b
(@>) = BazaarT p g a b a -> BazaarT p g a b b -> BazaarT p g a b b
forall a b.
BazaarT p g a b a -> BazaarT p g a b b -> BazaarT p g a b b
forall (f :: * -> *) a b. Applicative f => f a -> f b -> f b
(*>)
{-# INLINE (@>) #-}
<@ :: forall a b.
BazaarT p g a b a -> BazaarT p g a b b -> BazaarT p g a b a
(<@) = BazaarT p g a b a -> BazaarT p g a b b -> BazaarT p g a b a
forall a b.
BazaarT p g a b a -> BazaarT p g a b b -> BazaarT p g a b a
forall (f :: * -> *) a b. Applicative f => f a -> f b -> f a
(<*)
{-# INLINE (<@) #-}
instance (Profunctor p, Contravariant g) => Contravariant (BazaarT p g a b) where
contramap :: forall a' a. (a' -> a) -> BazaarT p g a b a -> BazaarT p g a b a'
contramap a' -> a
_ = a' -> BazaarT p g a b a -> BazaarT p g a b a'
forall a b. a -> BazaarT p g a b b -> BazaarT p g a b a
forall (f :: * -> *) a b. Functor f => a -> f b -> f a
(<$) ([Char] -> a'
forall a. HasCallStack => [Char] -> a
error [Char]
"contramap: BazaarT")
{-# INLINE contramap #-}
instance Contravariant g => Semigroup (BazaarT p g a b t) where
BazaarT forall (f :: * -> *). Applicative f => p a (f b) -> f t
a <> :: BazaarT p g a b t -> BazaarT p g a b t -> BazaarT p g a b t
<> BazaarT forall (f :: * -> *). Applicative f => p a (f b) -> f t
b = (forall (f :: * -> *). Applicative f => p a (f b) -> f t)
-> BazaarT p g a b t
forall (p :: * -> * -> *) (g :: * -> *) a b t.
(forall (f :: * -> *). Applicative f => p a (f b) -> f t)
-> BazaarT p g a b t
BazaarT ((forall (f :: * -> *). Applicative f => p a (f b) -> f t)
-> BazaarT p g a b t)
-> (forall (f :: * -> *). Applicative f => p a (f b) -> f t)
-> BazaarT p g a b t
forall a b. (a -> b) -> a -> b
$ \p a (f b)
f -> p a (f b) -> f t
forall (f :: * -> *). Applicative f => p a (f b) -> f t
a p a (f b)
f f t -> f t -> f t
forall a b. f a -> f b -> f a
forall (f :: * -> *) a b. Applicative f => f a -> f b -> f a
<* p a (f b) -> f t
forall (f :: * -> *). Applicative f => p a (f b) -> f t
b p a (f b)
f
{-# INLINE (<>) #-}
instance Contravariant g => Monoid (BazaarT p g a b t) where
mempty :: BazaarT p g a b t
mempty = (forall (f :: * -> *). Applicative f => p a (f b) -> f t)
-> BazaarT p g a b t
forall (p :: * -> * -> *) (g :: * -> *) a b t.
(forall (f :: * -> *). Applicative f => p a (f b) -> f t)
-> BazaarT p g a b t
BazaarT ((forall (f :: * -> *). Applicative f => p a (f b) -> f t)
-> BazaarT p g a b t)
-> (forall (f :: * -> *). Applicative f => p a (f b) -> f t)
-> BazaarT p g a b t
forall a b. (a -> b) -> a -> b
$ \p a (f b)
_ -> t -> f t
forall a. a -> f a
forall (f :: * -> *) a. Applicative f => a -> f a
pure ([Char] -> t
forall a. HasCallStack => [Char] -> a
error [Char]
"mempty: BazaarT")
{-# INLINE mempty #-}
#if !(MIN_VERSION_base(4,11,0))
BazaarT a `mappend` BazaarT b = BazaarT $ \f -> a f <* b f
{-# INLINE mappend #-}
#endif
class Profunctor p => Bizarre1 p w | w -> p where
bazaar1 :: Apply f => p a (f b) -> w a b t -> f t
newtype Bazaar1 p a b t = Bazaar1 { forall (p :: * -> * -> *) a b t.
Bazaar1 p a b t
-> forall (f :: * -> *). Apply f => p a (f b) -> f t
runBazaar1 :: forall f. Apply f => p a (f b) -> f t }
type Bazaar1' p a = Bazaar1 p a a
instance IndexedFunctor (Bazaar1 p) where
ifmap :: forall s t a b. (s -> t) -> Bazaar1 p a b s -> Bazaar1 p a b t
ifmap s -> t
f (Bazaar1 forall (f :: * -> *). Apply f => p a (f b) -> f s
k) = (forall (f :: * -> *). Apply f => p a (f b) -> f t)
-> Bazaar1 p a b t
forall (p :: * -> * -> *) a b t.
(forall (f :: * -> *). Apply f => p a (f b) -> f t)
-> Bazaar1 p a b t
Bazaar1 ((s -> t) -> f s -> f t
forall a b. (a -> b) -> f a -> f b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap s -> t
f (f s -> f t) -> (p a (f b) -> f s) -> p a (f b) -> f t
forall b c a. (b -> c) -> (a -> b) -> a -> c
. p a (f b) -> f s
forall (f :: * -> *). Apply f => p a (f b) -> f s
k)
{-# INLINE ifmap #-}
instance Conjoined p => IndexedComonad (Bazaar1 p) where
iextract :: forall a t. Bazaar1 p a a t -> t
iextract (Bazaar1 forall (f :: * -> *). Apply f => p a (f a) -> f t
m) = Identity t -> t
forall a. Identity a -> a
runIdentity (Identity t -> t) -> Identity t -> t
forall a b. (a -> b) -> a -> b
$ p a (Identity a) -> Identity t
forall (f :: * -> *). Apply f => p a (f a) -> f t
m ((a -> Identity a) -> p a (Identity a)
forall b c. (b -> c) -> p b c
forall (a :: * -> * -> *) b c. Arrow a => (b -> c) -> a b c
arr a -> Identity a
forall a. a -> Identity a
Identity)
{-# INLINE iextract #-}
iduplicate :: forall a c t b. Bazaar1 p a c t -> Bazaar1 p a b (Bazaar1 p b c t)
iduplicate (Bazaar1 forall (f :: * -> *). Apply f => p a (f c) -> f t
m) = Compose (Bazaar1 p a b) (Bazaar1 p b c) t
-> Bazaar1 p a b (Bazaar1 p b c t)
forall {k1} {k2} (f :: k1 -> *) (g :: k2 -> k1) (a :: k2).
Compose f g a -> f (g a)
getCompose (Compose (Bazaar1 p a b) (Bazaar1 p b c) t
-> Bazaar1 p a b (Bazaar1 p b c t))
-> Compose (Bazaar1 p a b) (Bazaar1 p b c) t
-> Bazaar1 p a b (Bazaar1 p b c t)
forall a b. (a -> b) -> a -> b
$ p a (Compose (Bazaar1 p a b) (Bazaar1 p b c) c)
-> Compose (Bazaar1 p a b) (Bazaar1 p b c) t
forall (f :: * -> *). Apply f => p a (f c) -> f t
m (Bazaar1 p a b (Bazaar1 p b c c)
-> Compose (Bazaar1 p a b) (Bazaar1 p b c) c
forall {k} {k1} (f :: k -> *) (g :: k1 -> k) (a :: k1).
f (g a) -> Compose f g a
Compose (Bazaar1 p a b (Bazaar1 p b c c)
-> Compose (Bazaar1 p a b) (Bazaar1 p b c) c)
-> p a (Bazaar1 p a b (Bazaar1 p b c c))
-> p a (Compose (Bazaar1 p a b) (Bazaar1 p b c) c)
forall a b c (q :: * -> * -> *).
Coercible c b =>
q b c -> p a b -> p a c
forall (p :: * -> * -> *) a b c (q :: * -> * -> *).
(Profunctor p, Coercible c b) =>
q b c -> p a b -> p a c
#. p b (Bazaar1 p b c c)
-> p (Bazaar1 p a b b) (Bazaar1 p a b (Bazaar1 p b c c))
forall (f :: * -> *) a b. Functor f => p a b -> p (f a) (f b)
forall (p :: * -> * -> *) (f :: * -> *) a b.
(Conjoined p, Functor f) =>
p a b -> p (f a) (f b)
distrib p b (Bazaar1 p b c c)
forall a b. p a (Bazaar1 p a b b)
forall (p :: * -> * -> *) (w :: * -> * -> * -> *) a b.
Sellable p w =>
p a (w a b b)
sell p (Bazaar1 p a b b) (Bazaar1 p a b (Bazaar1 p b c c))
-> p a (Bazaar1 p a b b) -> p a (Bazaar1 p a b (Bazaar1 p b c c))
forall b c a. p b c -> p a b -> p a c
forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
C.. p a (Bazaar1 p a b b)
forall a b. p a (Bazaar1 p a b b)
forall (p :: * -> * -> *) (w :: * -> * -> * -> *) a b.
Sellable p w =>
p a (w a b b)
sell)
{-# INLINE iduplicate #-}
instance Corepresentable p => Sellable p (Bazaar1 p) where
sell :: forall a b. p a (Bazaar1 p a b b)
sell = (Corep p a -> Bazaar1 p a b b) -> p a (Bazaar1 p a b b)
forall d c. (Corep p d -> c) -> p d c
forall (p :: * -> * -> *) d c.
Corepresentable p =>
(Corep p d -> c) -> p d c
cotabulate ((Corep p a -> Bazaar1 p a b b) -> p a (Bazaar1 p a b b))
-> (Corep p a -> Bazaar1 p a b b) -> p a (Bazaar1 p a b b)
forall a b. (a -> b) -> a -> b
$ \ Corep p a
w -> (forall (f :: * -> *). Apply f => p a (f b) -> f b)
-> Bazaar1 p a b b
forall (p :: * -> * -> *) a b t.
(forall (f :: * -> *). Apply f => p a (f b) -> f t)
-> Bazaar1 p a b t
Bazaar1 ((forall (f :: * -> *). Apply f => p a (f b) -> f b)
-> Bazaar1 p a b b)
-> (forall (f :: * -> *). Apply f => p a (f b) -> f b)
-> Bazaar1 p a b b
forall a b. (a -> b) -> a -> b
$ (p a (f b) -> Rep (->) (f b)) -> p a (f b) -> f b
forall d c. (d -> Rep (->) c) -> d -> c
forall (p :: * -> * -> *) d c.
Representable p =>
(d -> Rep p c) -> p d c
tabulate ((p a (f b) -> Rep (->) (f b)) -> p a (f b) -> f b)
-> (p a (f b) -> Rep (->) (f b)) -> p a (f b) -> f b
forall a b. (a -> b) -> a -> b
$ \p a (f b)
k -> f b -> Identity (f b)
forall a. a -> Identity a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (p a (f b) -> Corep p a -> f b
forall a b. p a b -> Corep p a -> b
forall (p :: * -> * -> *) (f :: * -> *) a b.
Cosieve p f =>
p a b -> f a -> b
cosieve p a (f b)
k Corep p a
w)
{-# INLINE sell #-}
instance Profunctor p => Bizarre1 p (Bazaar1 p) where
bazaar1 :: forall (f :: * -> *) a b t.
Apply f =>
p a (f b) -> Bazaar1 p a b t -> f t
bazaar1 p a (f b)
g (Bazaar1 forall (f :: * -> *). Apply f => p a (f b) -> f t
f) = p a (f b) -> f t
forall (f :: * -> *). Apply f => p a (f b) -> f t
f p a (f b)
g
{-# INLINE bazaar1 #-}
instance Functor (Bazaar1 p a b) where
fmap :: forall a b. (a -> b) -> Bazaar1 p a b a -> Bazaar1 p a b b
fmap = (a -> b) -> Bazaar1 p a b a -> Bazaar1 p a b b
forall s t a b. (s -> t) -> Bazaar1 p a b s -> Bazaar1 p a b t
forall (w :: * -> * -> * -> *) s t a b.
IndexedFunctor w =>
(s -> t) -> w a b s -> w a b t
ifmap
{-# INLINE fmap #-}
a
x <$ :: forall a b. a -> Bazaar1 p a b b -> Bazaar1 p a b a
<$ Bazaar1 forall (f :: * -> *). Apply f => p a (f b) -> f b
k = (forall (f :: * -> *). Apply f => p a (f b) -> f a)
-> Bazaar1 p a b a
forall (p :: * -> * -> *) a b t.
(forall (f :: * -> *). Apply f => p a (f b) -> f t)
-> Bazaar1 p a b t
Bazaar1 ((a
x a -> f b -> f a
forall a b. a -> f b -> f a
forall (f :: * -> *) a b. Functor f => a -> f b -> f a
<$) (f b -> f a) -> (p a (f b) -> f b) -> p a (f b) -> f a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. p a (f b) -> f b
forall (f :: * -> *). Apply f => p a (f b) -> f b
k)
{-# INLINE (<$) #-}
instance Apply (Bazaar1 p a b) where
Bazaar1 forall (f :: * -> *). Apply f => p a (f b) -> f (a -> b)
mf <.> :: forall a b.
Bazaar1 p a b (a -> b) -> Bazaar1 p a b a -> Bazaar1 p a b b
<.> Bazaar1 forall (f :: * -> *). Apply f => p a (f b) -> f a
ma = (forall (f :: * -> *). Apply f => p a (f b) -> f b)
-> Bazaar1 p a b b
forall (p :: * -> * -> *) a b t.
(forall (f :: * -> *). Apply f => p a (f b) -> f t)
-> Bazaar1 p a b t
Bazaar1 ((forall (f :: * -> *). Apply f => p a (f b) -> f b)
-> Bazaar1 p a b b)
-> (forall (f :: * -> *). Apply f => p a (f b) -> f b)
-> Bazaar1 p a b b
forall a b. (a -> b) -> a -> b
$ \ p a (f b)
pafb -> p a (f b) -> f (a -> b)
forall (f :: * -> *). Apply f => p a (f b) -> f (a -> b)
mf p a (f b)
pafb f (a -> b) -> f a -> f b
forall a b. f (a -> b) -> f a -> f b
forall (f :: * -> *) a b. Apply f => f (a -> b) -> f a -> f b
<.> p a (f b) -> f a
forall (f :: * -> *). Apply f => p a (f b) -> f a
ma p a (f b)
pafb
{-# INLINE (<.>) #-}
Bazaar1 forall (f :: * -> *). Apply f => p a (f b) -> f a
mf .> :: forall a b. Bazaar1 p a b a -> Bazaar1 p a b b -> Bazaar1 p a b b
.> Bazaar1 forall (f :: * -> *). Apply f => p a (f b) -> f b
ma = (forall (f :: * -> *). Apply f => p a (f b) -> f b)
-> Bazaar1 p a b b
forall (p :: * -> * -> *) a b t.
(forall (f :: * -> *). Apply f => p a (f b) -> f t)
-> Bazaar1 p a b t
Bazaar1 ((forall (f :: * -> *). Apply f => p a (f b) -> f b)
-> Bazaar1 p a b b)
-> (forall (f :: * -> *). Apply f => p a (f b) -> f b)
-> Bazaar1 p a b b
forall a b. (a -> b) -> a -> b
$ \ p a (f b)
pafb -> p a (f b) -> f a
forall (f :: * -> *). Apply f => p a (f b) -> f a
mf p a (f b)
pafb f a -> f b -> f b
forall a b. f a -> f b -> f b
forall (f :: * -> *) a b. Apply f => f a -> f b -> f b
.> p a (f b) -> f b
forall (f :: * -> *). Apply f => p a (f b) -> f b
ma p a (f b)
pafb
{-# INLINE (.>) #-}
Bazaar1 forall (f :: * -> *). Apply f => p a (f b) -> f a
mf <. :: forall a b. Bazaar1 p a b a -> Bazaar1 p a b b -> Bazaar1 p a b a
<. Bazaar1 forall (f :: * -> *). Apply f => p a (f b) -> f b
ma = (forall (f :: * -> *). Apply f => p a (f b) -> f a)
-> Bazaar1 p a b a
forall (p :: * -> * -> *) a b t.
(forall (f :: * -> *). Apply f => p a (f b) -> f t)
-> Bazaar1 p a b t
Bazaar1 ((forall (f :: * -> *). Apply f => p a (f b) -> f a)
-> Bazaar1 p a b a)
-> (forall (f :: * -> *). Apply f => p a (f b) -> f a)
-> Bazaar1 p a b a
forall a b. (a -> b) -> a -> b
$ \ p a (f b)
pafb -> p a (f b) -> f a
forall (f :: * -> *). Apply f => p a (f b) -> f a
mf p a (f b)
pafb f a -> f b -> f a
forall a b. f a -> f b -> f a
forall (f :: * -> *) a b. Apply f => f a -> f b -> f a
<. p a (f b) -> f b
forall (f :: * -> *). Apply f => p a (f b) -> f b
ma p a (f b)
pafb
{-# INLINE (<.) #-}
instance (a ~ b, Conjoined p) => Comonad (Bazaar1 p a b) where
extract :: forall a. Bazaar1 p a b a -> a
extract = Bazaar1 p a a a -> a
Bazaar1 p a b a -> a
forall a t. Bazaar1 p a a t -> t
forall (w :: * -> * -> * -> *) a t.
IndexedComonad w =>
w a a t -> t
iextract
{-# INLINE extract #-}
duplicate :: forall a. Bazaar1 p a b a -> Bazaar1 p a b (Bazaar1 p a b a)
duplicate = Bazaar1 p a b a -> Bazaar1 p a b (Bazaar1 p a b a)
Bazaar1 p a b a -> Bazaar1 p a b (Bazaar1 p b b a)
forall a c t b. Bazaar1 p a c t -> Bazaar1 p a b (Bazaar1 p b c t)
forall (w :: * -> * -> * -> *) a c t b.
IndexedComonad w =>
w a c t -> w a b (w b c t)
iduplicate
{-# INLINE duplicate #-}
instance (a ~ b, Conjoined p) => ComonadApply (Bazaar1 p a b) where
<@> :: forall a b.
Bazaar1 p a b (a -> b) -> Bazaar1 p a b a -> Bazaar1 p a b b
(<@>) = Bazaar1 p a b (a -> b) -> Bazaar1 p a b a -> Bazaar1 p a b b
forall a b.
Bazaar1 p a b (a -> b) -> Bazaar1 p a b a -> Bazaar1 p a b b
forall (f :: * -> *) a b. Apply f => f (a -> b) -> f a -> f b
(<.>)
{-# INLINE (<@>) #-}
@> :: forall a b. Bazaar1 p a b a -> Bazaar1 p a b b -> Bazaar1 p a b b
(@>) = Bazaar1 p a b a -> Bazaar1 p a b b -> Bazaar1 p a b b
forall a b. Bazaar1 p a b a -> Bazaar1 p a b b -> Bazaar1 p a b b
forall (f :: * -> *) a b. Apply f => f a -> f b -> f b
(.>)
{-# INLINE (@>) #-}
<@ :: forall a b. Bazaar1 p a b a -> Bazaar1 p a b b -> Bazaar1 p a b a
(<@) = Bazaar1 p a b a -> Bazaar1 p a b b -> Bazaar1 p a b a
forall a b. Bazaar1 p a b a -> Bazaar1 p a b b -> Bazaar1 p a b a
forall (f :: * -> *) a b. Apply f => f a -> f b -> f a
(<.)
{-# INLINE (<@) #-}
newtype BazaarT1 p (g :: Type -> Type) a b t = BazaarT1 { forall (p :: * -> * -> *) (g :: * -> *) a b t.
BazaarT1 p g a b t
-> forall (f :: * -> *). Apply f => p a (f b) -> f t
runBazaarT1 :: forall f. Apply f => p a (f b) -> f t }
type role BazaarT1 representational nominal nominal nominal nominal
type BazaarT1' p g a = BazaarT1 p g a a
instance IndexedFunctor (BazaarT1 p g) where
ifmap :: forall s t a b.
(s -> t) -> BazaarT1 p g a b s -> BazaarT1 p g a b t
ifmap s -> t
f (BazaarT1 forall (f :: * -> *). Apply f => p a (f b) -> f s
k) = (forall (f :: * -> *). Apply f => p a (f b) -> f t)
-> BazaarT1 p g a b t
forall (p :: * -> * -> *) (g :: * -> *) a b t.
(forall (f :: * -> *). Apply f => p a (f b) -> f t)
-> BazaarT1 p g a b t
BazaarT1 ((s -> t) -> f s -> f t
forall a b. (a -> b) -> f a -> f b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap s -> t
f (f s -> f t) -> (p a (f b) -> f s) -> p a (f b) -> f t
forall b c a. (b -> c) -> (a -> b) -> a -> c
. p a (f b) -> f s
forall (f :: * -> *). Apply f => p a (f b) -> f s
k)
{-# INLINE ifmap #-}
instance Conjoined p => IndexedComonad (BazaarT1 p g) where
iextract :: forall a t. BazaarT1 p g a a t -> t
iextract (BazaarT1 forall (f :: * -> *). Apply f => p a (f a) -> f t
m) = Identity t -> t
forall a. Identity a -> a
runIdentity (Identity t -> t) -> Identity t -> t
forall a b. (a -> b) -> a -> b
$ p a (Identity a) -> Identity t
forall (f :: * -> *). Apply f => p a (f a) -> f t
m ((a -> Identity a) -> p a (Identity a)
forall b c. (b -> c) -> p b c
forall (a :: * -> * -> *) b c. Arrow a => (b -> c) -> a b c
arr a -> Identity a
forall a. a -> Identity a
Identity)
{-# INLINE iextract #-}
iduplicate :: forall a c t b.
BazaarT1 p g a c t -> BazaarT1 p g a b (BazaarT1 p g b c t)
iduplicate (BazaarT1 forall (f :: * -> *). Apply f => p a (f c) -> f t
m) = Compose (BazaarT1 p g a b) (BazaarT1 p g b c) t
-> BazaarT1 p g a b (BazaarT1 p g b c t)
forall {k1} {k2} (f :: k1 -> *) (g :: k2 -> k1) (a :: k2).
Compose f g a -> f (g a)
getCompose (Compose (BazaarT1 p g a b) (BazaarT1 p g b c) t
-> BazaarT1 p g a b (BazaarT1 p g b c t))
-> Compose (BazaarT1 p g a b) (BazaarT1 p g b c) t
-> BazaarT1 p g a b (BazaarT1 p g b c t)
forall a b. (a -> b) -> a -> b
$ p a (Compose (BazaarT1 p g a b) (BazaarT1 p g b c) c)
-> Compose (BazaarT1 p g a b) (BazaarT1 p g b c) t
forall (f :: * -> *). Apply f => p a (f c) -> f t
m (BazaarT1 p g a b (BazaarT1 p g b c c)
-> Compose (BazaarT1 p g a b) (BazaarT1 p g b c) c
forall {k} {k1} (f :: k -> *) (g :: k1 -> k) (a :: k1).
f (g a) -> Compose f g a
Compose (BazaarT1 p g a b (BazaarT1 p g b c c)
-> Compose (BazaarT1 p g a b) (BazaarT1 p g b c) c)
-> p a (BazaarT1 p g a b (BazaarT1 p g b c c))
-> p a (Compose (BazaarT1 p g a b) (BazaarT1 p g b c) c)
forall a b c (q :: * -> * -> *).
Coercible c b =>
q b c -> p a b -> p a c
forall (p :: * -> * -> *) a b c (q :: * -> * -> *).
(Profunctor p, Coercible c b) =>
q b c -> p a b -> p a c
#. p b (BazaarT1 p g b c c)
-> p (BazaarT1 p g a b b) (BazaarT1 p g a b (BazaarT1 p g b c c))
forall (f :: * -> *) a b. Functor f => p a b -> p (f a) (f b)
forall (p :: * -> * -> *) (f :: * -> *) a b.
(Conjoined p, Functor f) =>
p a b -> p (f a) (f b)
distrib p b (BazaarT1 p g b c c)
forall a b. p a (BazaarT1 p g a b b)
forall (p :: * -> * -> *) (w :: * -> * -> * -> *) a b.
Sellable p w =>
p a (w a b b)
sell p (BazaarT1 p g a b b) (BazaarT1 p g a b (BazaarT1 p g b c c))
-> p a (BazaarT1 p g a b b)
-> p a (BazaarT1 p g a b (BazaarT1 p g b c c))
forall b c a. p b c -> p a b -> p a c
forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
C.. p a (BazaarT1 p g a b b)
forall a b. p a (BazaarT1 p g a b b)
forall (p :: * -> * -> *) (w :: * -> * -> * -> *) a b.
Sellable p w =>
p a (w a b b)
sell)
{-# INLINE iduplicate #-}
instance Corepresentable p => Sellable p (BazaarT1 p g) where
sell :: forall a b. p a (BazaarT1 p g a b b)
sell = (Corep p a -> BazaarT1 p g a b b) -> p a (BazaarT1 p g a b b)
forall d c. (Corep p d -> c) -> p d c
forall (p :: * -> * -> *) d c.
Corepresentable p =>
(Corep p d -> c) -> p d c
cotabulate ((Corep p a -> BazaarT1 p g a b b) -> p a (BazaarT1 p g a b b))
-> (Corep p a -> BazaarT1 p g a b b) -> p a (BazaarT1 p g a b b)
forall a b. (a -> b) -> a -> b
$ \ Corep p a
w -> (forall (f :: * -> *). Apply f => p a (f b) -> f b)
-> BazaarT1 p g a b b
forall (p :: * -> * -> *) (g :: * -> *) a b t.
(forall (f :: * -> *). Apply f => p a (f b) -> f t)
-> BazaarT1 p g a b t
BazaarT1 (p a (f b) -> Corep p a -> f b
forall a b. p a b -> Corep p a -> b
forall (p :: * -> * -> *) (f :: * -> *) a b.
Cosieve p f =>
p a b -> f a -> b
`cosieve` Corep p a
w)
{-# INLINE sell #-}
instance Profunctor p => Bizarre1 p (BazaarT1 p g) where
bazaar1 :: forall (f :: * -> *) a b t.
Apply f =>
p a (f b) -> BazaarT1 p g a b t -> f t
bazaar1 p a (f b)
g (BazaarT1 forall (f :: * -> *). Apply f => p a (f b) -> f t
f) = p a (f b) -> f t
forall (f :: * -> *). Apply f => p a (f b) -> f t
f p a (f b)
g
{-# INLINE bazaar1 #-}
instance Functor (BazaarT1 p g a b) where
fmap :: forall a b. (a -> b) -> BazaarT1 p g a b a -> BazaarT1 p g a b b
fmap = (a -> b) -> BazaarT1 p g a b a -> BazaarT1 p g a b b
forall s t a b.
(s -> t) -> BazaarT1 p g a b s -> BazaarT1 p g a b t
forall (w :: * -> * -> * -> *) s t a b.
IndexedFunctor w =>
(s -> t) -> w a b s -> w a b t
ifmap
{-# INLINE fmap #-}
a
x <$ :: forall a b. a -> BazaarT1 p g a b b -> BazaarT1 p g a b a
<$ BazaarT1 forall (f :: * -> *). Apply f => p a (f b) -> f b
k = (forall (f :: * -> *). Apply f => p a (f b) -> f a)
-> BazaarT1 p g a b a
forall (p :: * -> * -> *) (g :: * -> *) a b t.
(forall (f :: * -> *). Apply f => p a (f b) -> f t)
-> BazaarT1 p g a b t
BazaarT1 ((a
x a -> f b -> f a
forall a b. a -> f b -> f a
forall (f :: * -> *) a b. Functor f => a -> f b -> f a
<$) (f b -> f a) -> (p a (f b) -> f b) -> p a (f b) -> f a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. p a (f b) -> f b
forall (f :: * -> *). Apply f => p a (f b) -> f b
k)
{-# INLINE (<$) #-}
instance Apply (BazaarT1 p g a b) where
BazaarT1 forall (f :: * -> *). Apply f => p a (f b) -> f (a -> b)
mf <.> :: forall a b.
BazaarT1 p g a b (a -> b)
-> BazaarT1 p g a b a -> BazaarT1 p g a b b
<.> BazaarT1 forall (f :: * -> *). Apply f => p a (f b) -> f a
ma = (forall (f :: * -> *). Apply f => p a (f b) -> f b)
-> BazaarT1 p g a b b
forall (p :: * -> * -> *) (g :: * -> *) a b t.
(forall (f :: * -> *). Apply f => p a (f b) -> f t)
-> BazaarT1 p g a b t
BazaarT1 ((forall (f :: * -> *). Apply f => p a (f b) -> f b)
-> BazaarT1 p g a b b)
-> (forall (f :: * -> *). Apply f => p a (f b) -> f b)
-> BazaarT1 p g a b b
forall a b. (a -> b) -> a -> b
$ \ p a (f b)
pafb -> p a (f b) -> f (a -> b)
forall (f :: * -> *). Apply f => p a (f b) -> f (a -> b)
mf p a (f b)
pafb f (a -> b) -> f a -> f b
forall a b. f (a -> b) -> f a -> f b
forall (f :: * -> *) a b. Apply f => f (a -> b) -> f a -> f b
<.> p a (f b) -> f a
forall (f :: * -> *). Apply f => p a (f b) -> f a
ma p a (f b)
pafb
{-# INLINE (<.>) #-}
BazaarT1 forall (f :: * -> *). Apply f => p a (f b) -> f a
mf .> :: forall a b.
BazaarT1 p g a b a -> BazaarT1 p g a b b -> BazaarT1 p g a b b
.> BazaarT1 forall (f :: * -> *). Apply f => p a (f b) -> f b
ma = (forall (f :: * -> *). Apply f => p a (f b) -> f b)
-> BazaarT1 p g a b b
forall (p :: * -> * -> *) (g :: * -> *) a b t.
(forall (f :: * -> *). Apply f => p a (f b) -> f t)
-> BazaarT1 p g a b t
BazaarT1 ((forall (f :: * -> *). Apply f => p a (f b) -> f b)
-> BazaarT1 p g a b b)
-> (forall (f :: * -> *). Apply f => p a (f b) -> f b)
-> BazaarT1 p g a b b
forall a b. (a -> b) -> a -> b
$ \ p a (f b)
pafb -> p a (f b) -> f a
forall (f :: * -> *). Apply f => p a (f b) -> f a
mf p a (f b)
pafb f a -> f b -> f b
forall a b. f a -> f b -> f b
forall (f :: * -> *) a b. Apply f => f a -> f b -> f b
.> p a (f b) -> f b
forall (f :: * -> *). Apply f => p a (f b) -> f b
ma p a (f b)
pafb
{-# INLINE (.>) #-}
BazaarT1 forall (f :: * -> *). Apply f => p a (f b) -> f a
mf <. :: forall a b.
BazaarT1 p g a b a -> BazaarT1 p g a b b -> BazaarT1 p g a b a
<. BazaarT1 forall (f :: * -> *). Apply f => p a (f b) -> f b
ma = (forall (f :: * -> *). Apply f => p a (f b) -> f a)
-> BazaarT1 p g a b a
forall (p :: * -> * -> *) (g :: * -> *) a b t.
(forall (f :: * -> *). Apply f => p a (f b) -> f t)
-> BazaarT1 p g a b t
BazaarT1 ((forall (f :: * -> *). Apply f => p a (f b) -> f a)
-> BazaarT1 p g a b a)
-> (forall (f :: * -> *). Apply f => p a (f b) -> f a)
-> BazaarT1 p g a b a
forall a b. (a -> b) -> a -> b
$ \ p a (f b)
pafb -> p a (f b) -> f a
forall (f :: * -> *). Apply f => p a (f b) -> f a
mf p a (f b)
pafb f a -> f b -> f a
forall a b. f a -> f b -> f a
forall (f :: * -> *) a b. Apply f => f a -> f b -> f a
<. p a (f b) -> f b
forall (f :: * -> *). Apply f => p a (f b) -> f b
ma p a (f b)
pafb
{-# INLINE (<.) #-}
instance (a ~ b, Conjoined p) => Comonad (BazaarT1 p g a b) where
extract :: forall a. BazaarT1 p g a b a -> a
extract = BazaarT1 p g a a a -> a
BazaarT1 p g a b a -> a
forall a t. BazaarT1 p g a a t -> t
forall (w :: * -> * -> * -> *) a t.
IndexedComonad w =>
w a a t -> t
iextract
{-# INLINE extract #-}
duplicate :: forall a.
BazaarT1 p g a b a -> BazaarT1 p g a b (BazaarT1 p g a b a)
duplicate = BazaarT1 p g a b a -> BazaarT1 p g a b (BazaarT1 p g a b a)
BazaarT1 p g a b a -> BazaarT1 p g a b (BazaarT1 p g b b a)
forall a c t b.
BazaarT1 p g a c t -> BazaarT1 p g a b (BazaarT1 p g b c t)
forall (w :: * -> * -> * -> *) a c t b.
IndexedComonad w =>
w a c t -> w a b (w b c t)
iduplicate
{-# INLINE duplicate #-}
instance (a ~ b, Conjoined p) => ComonadApply (BazaarT1 p g a b) where
<@> :: forall a b.
BazaarT1 p g a b (a -> b)
-> BazaarT1 p g a b a -> BazaarT1 p g a b b
(<@>) = BazaarT1 p g a b (a -> b)
-> BazaarT1 p g a b a -> BazaarT1 p g a b b
forall a b.
BazaarT1 p g a b (a -> b)
-> BazaarT1 p g a b a -> BazaarT1 p g a b b
forall (f :: * -> *) a b. Apply f => f (a -> b) -> f a -> f b
(<.>)
{-# INLINE (<@>) #-}
@> :: forall a b.
BazaarT1 p g a b a -> BazaarT1 p g a b b -> BazaarT1 p g a b b
(@>) = BazaarT1 p g a b a -> BazaarT1 p g a b b -> BazaarT1 p g a b b
forall a b.
BazaarT1 p g a b a -> BazaarT1 p g a b b -> BazaarT1 p g a b b
forall (f :: * -> *) a b. Apply f => f a -> f b -> f b
(.>)
{-# INLINE (@>) #-}
<@ :: forall a b.
BazaarT1 p g a b a -> BazaarT1 p g a b b -> BazaarT1 p g a b a
(<@) = BazaarT1 p g a b a -> BazaarT1 p g a b b -> BazaarT1 p g a b a
forall a b.
BazaarT1 p g a b a -> BazaarT1 p g a b b -> BazaarT1 p g a b a
forall (f :: * -> *) a b. Apply f => f a -> f b -> f a
(<.)
{-# INLINE (<@) #-}
instance (Profunctor p, Contravariant g) => Contravariant (BazaarT1 p g a b) where
contramap :: forall a' a. (a' -> a) -> BazaarT1 p g a b a -> BazaarT1 p g a b a'
contramap a' -> a
_ = a' -> BazaarT1 p g a b a -> BazaarT1 p g a b a'
forall a b. a -> BazaarT1 p g a b b -> BazaarT1 p g a b a
forall (f :: * -> *) a b. Functor f => a -> f b -> f a
(<$) ([Char] -> a'
forall a. HasCallStack => [Char] -> a
error [Char]
"contramap: BazaarT1")
{-# INLINE contramap #-}
instance Contravariant g => Semigroup (BazaarT1 p g a b t) where
BazaarT1 forall (f :: * -> *). Apply f => p a (f b) -> f t
a <> :: BazaarT1 p g a b t -> BazaarT1 p g a b t -> BazaarT1 p g a b t
<> BazaarT1 forall (f :: * -> *). Apply f => p a (f b) -> f t
b = (forall (f :: * -> *). Apply f => p a (f b) -> f t)
-> BazaarT1 p g a b t
forall (p :: * -> * -> *) (g :: * -> *) a b t.
(forall (f :: * -> *). Apply f => p a (f b) -> f t)
-> BazaarT1 p g a b t
BazaarT1 ((forall (f :: * -> *). Apply f => p a (f b) -> f t)
-> BazaarT1 p g a b t)
-> (forall (f :: * -> *). Apply f => p a (f b) -> f t)
-> BazaarT1 p g a b t
forall a b. (a -> b) -> a -> b
$ \p a (f b)
f -> p a (f b) -> f t
forall (f :: * -> *). Apply f => p a (f b) -> f t
a p a (f b)
f f t -> f t -> f t
forall a b. f a -> f b -> f a
forall (f :: * -> *) a b. Apply f => f a -> f b -> f a
<. p a (f b) -> f t
forall (f :: * -> *). Apply f => p a (f b) -> f t
b p a (f b)
f
{-# INLINE (<>) #-}