{-# LANGUAGE CPP #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE MultiParamTypeClasses #-}
-----------------------------------------------------------------------------
-- |
-- Module      :  Control.Comonad.Density
-- Copyright   :  (C) 2008-2016 Edward Kmett
-- License     :  BSD-style (see the file LICENSE)
--
-- Maintainer  :  Edward Kmett <ekmett@gmail.com>
-- Stability   :  experimental
-- Portability :  non-portable (GADTs, MPTCs)
--
-- The 'Density' 'Comonad' for a 'Functor' (aka the 'Comonad generated by a 'Functor')
-- The 'Density' term dates back to Dubuc''s 1974 thesis. The term
-- 'Monad' generated by a 'Functor' dates back to 1972 in Street''s
-- ''Formal Theory of Monads''.
--
-- The left Kan extension of a 'Functor' along itself (@'Lan' f f@) forms a 'Comonad'. This is
-- that 'Comonad'.
----------------------------------------------------------------------------
module Control.Comonad.Density
  ( Density(..)
  , liftDensity
  , densityToAdjunction, adjunctionToDensity
  , densityToLan, lanToDensity
  ) where

#if !(MIN_VERSION_base(4,18,0))
import Control.Applicative
#endif
import Control.Comonad
import Control.Comonad.Trans.Class
import Data.Functor.Apply
import Data.Functor.Adjunction
import Data.Functor.Extend
import Data.Functor.Kan.Lan

data Density k a where
  Density :: (k b -> a) -> k b -> Density k a

instance Functor (Density f) where
  fmap :: forall a b. (a -> b) -> Density f a -> Density f b
fmap a -> b
f (Density f b -> a
g f b
h) = (f b -> b) -> f b -> Density f b
forall {k} (k :: k -> *) (b :: k) a.
(k b -> a) -> k b -> Density k a
Density (a -> b
f (a -> b) -> (f b -> a) -> f b -> b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. f b -> a
g) f b
h
  {-# INLINE fmap #-}

instance Extend (Density f) where
  duplicated :: forall a. Density f a -> Density f (Density f a)
duplicated (Density f b -> a
f f b
ws) = (f b -> Density f a) -> f b -> Density f (Density f a)
forall {k} (k :: k -> *) (b :: k) a.
(k b -> a) -> k b -> Density k a
Density ((f b -> a) -> f b -> Density f a
forall {k} (k :: k -> *) (b :: k) a.
(k b -> a) -> k b -> Density k a
Density f b -> a
f) f b
ws
  {-# INLINE duplicated #-}

instance Comonad (Density f) where
  duplicate :: forall a. Density f a -> Density f (Density f a)
duplicate (Density f b -> a
f f b
ws) = (f b -> Density f a) -> f b -> Density f (Density f a)
forall {k} (k :: k -> *) (b :: k) a.
(k b -> a) -> k b -> Density k a
Density ((f b -> a) -> f b -> Density f a
forall {k} (k :: k -> *) (b :: k) a.
(k b -> a) -> k b -> Density k a
Density f b -> a
f) f b
ws
  {-# INLINE duplicate #-}
  extract :: forall a. Density f a -> a
extract (Density f b -> a
f f b
a) = f b -> a
f f b
a
  {-# INLINE extract #-}

instance ComonadTrans Density where
  lower :: forall (w :: * -> *) a. Comonad w => Density w a -> w a
lower (Density w b -> a
f w b
c) = (w b -> a) -> w b -> w a
forall a b. (w a -> b) -> w a -> w b
forall (w :: * -> *) a b. Comonad w => (w a -> b) -> w a -> w b
extend w b -> a
f w b
c
  {-# INLINE lower #-}

instance Apply f => Apply (Density f) where
  Density f b -> a -> b
kxf f b
x <.> :: forall a b. Density f (a -> b) -> Density f a -> Density f b
<.> Density f b -> a
kya f b
y =
    (f (b, b) -> b) -> f (b, b) -> Density f b
forall {k} (k :: k -> *) (b :: k) a.
(k b -> a) -> k b -> Density k a
Density (\f (b, b)
k -> f b -> a -> b
kxf (((b, b) -> b) -> f (b, b) -> f b
forall a b. (a -> b) -> f a -> f b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (b, b) -> b
forall a b. (a, b) -> a
fst f (b, b)
k) (f b -> a
kya (((b, b) -> b) -> f (b, b) -> f b
forall a b. (a -> b) -> f a -> f b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (b, b) -> b
forall a b. (a, b) -> b
snd f (b, b)
k))) ((,) (b -> b -> (b, b)) -> f b -> f (b -> (b, b))
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> f b
x f (b -> (b, b)) -> f b -> f (b, b)
forall a b. f (a -> b) -> f a -> f b
forall (f :: * -> *) a b. Apply f => f (a -> b) -> f a -> f b
<.> f b
y)
  {-# INLINE (<.>) #-}

instance Applicative f => Applicative (Density f) where
  pure :: forall a. a -> Density f a
pure a
a = (f () -> a) -> f () -> Density f a
forall {k} (k :: k -> *) (b :: k) a.
(k b -> a) -> k b -> Density k a
Density (a -> f () -> a
forall a b. a -> b -> a
const a
a) (() -> f ()
forall a. a -> f a
forall (f :: * -> *) a. Applicative f => a -> f a
pure ())
  {-# INLINE pure #-}
  Density f b -> a -> b
kxf f b
x <*> :: forall a b. Density f (a -> b) -> Density f a -> Density f b
<*> Density f b -> a
kya f b
y =
    (f (b, b) -> b) -> f (b, b) -> Density f b
forall {k} (k :: k -> *) (b :: k) a.
(k b -> a) -> k b -> Density k a
Density (\f (b, b)
k -> f b -> a -> b
kxf (((b, b) -> b) -> f (b, b) -> f b
forall a b. (a -> b) -> f a -> f b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (b, b) -> b
forall a b. (a, b) -> a
fst f (b, b)
k) (f b -> a
kya (((b, b) -> b) -> f (b, b) -> f b
forall a b. (a -> b) -> f a -> f b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (b, b) -> b
forall a b. (a, b) -> b
snd f (b, b)
k))) ((b -> b -> (b, b)) -> f b -> f b -> f (b, b)
forall a b c. (a -> b -> c) -> f a -> f b -> f c
forall (f :: * -> *) a b c.
Applicative f =>
(a -> b -> c) -> f a -> f b -> f c
liftA2 (,) f b
x f b
y)
  {-# INLINE (<*>) #-}

-- | The natural transformation from a @'Comonad' w@ to the 'Comonad' generated by @w@ (forwards).
--
-- This is merely a right-inverse (section) of 'lower', rather than a full inverse.
--
-- @
-- 'lower' . 'liftDensity' ≡ 'id'
-- @
liftDensity :: Comonad w => w a -> Density w a
liftDensity :: forall (w :: * -> *) a. Comonad w => w a -> Density w a
liftDensity = (w a -> a) -> w a -> Density w a
forall {k} (k :: k -> *) (b :: k) a.
(k b -> a) -> k b -> Density k a
Density w a -> a
forall a. w a -> a
forall (w :: * -> *) a. Comonad w => w a -> a
extract
{-# INLINE liftDensity #-}

-- | The Density 'Comonad' of a left adjoint is isomorphic to the 'Comonad' formed by that 'Adjunction'.
--
-- This isomorphism is witnessed by 'densityToAdjunction' and 'adjunctionToDensity'.
--
-- @
-- 'densityToAdjunction' . 'adjunctionToDensity' ≡ 'id'
-- 'adjunctionToDensity' . 'densityToAdjunction' ≡ 'id'
-- @
densityToAdjunction :: Adjunction f g => Density f a -> f (g a)
densityToAdjunction :: forall (f :: * -> *) (g :: * -> *) a.
Adjunction f g =>
Density f a -> f (g a)
densityToAdjunction (Density f b -> a
f f b
v) = (b -> g a) -> f b -> f (g a)
forall a b. (a -> b) -> f a -> f b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap ((f b -> a) -> b -> g a
forall a b. (f a -> b) -> a -> g b
forall (f :: * -> *) (u :: * -> *) a b.
Adjunction f u =>
(f a -> b) -> a -> u b
leftAdjunct f b -> a
f) f b
v
{-# INLINE densityToAdjunction #-}

adjunctionToDensity :: Adjunction f g => f (g a) -> Density f a
adjunctionToDensity :: forall (f :: * -> *) (g :: * -> *) a.
Adjunction f g =>
f (g a) -> Density f a
adjunctionToDensity = (f (g a) -> a) -> f (g a) -> Density f a
forall {k} (k :: k -> *) (b :: k) a.
(k b -> a) -> k b -> Density k a
Density f (g a) -> a
forall a. f (g a) -> a
forall (f :: * -> *) (u :: * -> *) a.
Adjunction f u =>
f (u a) -> a
counit
{-# INLINE adjunctionToDensity #-}

-- | The 'Density' 'Comonad' of a 'Functor' @f@ is obtained by taking the left Kan extension
-- ('Lan') of @f@ along itself. This isomorphism is witnessed by 'lanToDensity' and 'densityToLan'
--
-- @
-- 'lanToDensity' . 'densityToLan' ≡ 'id'
-- 'densityToLan' . 'lanToDensity' ≡ 'id'
-- @
lanToDensity :: Lan f f a -> Density f a
lanToDensity :: forall {k} (f :: k -> *) a. Lan f f a -> Density f a
lanToDensity (Lan f b -> a
f f b
v) = (f b -> a) -> f b -> Density f a
forall {k} (k :: k -> *) (b :: k) a.
(k b -> a) -> k b -> Density k a
Density f b -> a
f f b
v
{-# INLINE lanToDensity #-}

densityToLan :: Density f a -> Lan f f a
densityToLan :: forall {k} (f :: k -> *) a. Density f a -> Lan f f a
densityToLan (Density f b -> a
f f b
v) = (f b -> a) -> f b -> Lan f f a
forall {k} (g :: k -> *) (b :: k) a (h :: k -> *).
(g b -> a) -> h b -> Lan g h a
Lan f b -> a
f f b
v
{-# INLINE densityToLan #-}