bifunctors-5.6.2: Bifunctors
Safe HaskellSafe
LanguageHaskell2010

Data.Bifunctor.Functor

Synopsis

Documentation

type (:->) p q = forall a b. p a b -> q a b infixr 0 Source #

Using parametricity as an approximation of a natural transformation in two arguments.

class BifunctorFunctor t where Source #

Methods

bifmap :: (p :-> q) -> t p :-> t q Source #

Instances

Instances details
BifunctorFunctor (Flip :: (k3 -> k2 -> Type) -> k2 -> k3 -> Type) Source # 
Instance details

Defined in Data.Bifunctor.Flip

Methods

bifmap :: forall (p :: k -> k1 -> Type) (q :: k -> k1 -> Type). (p :-> q) -> Flip p :-> Flip q Source #

BifunctorFunctor (Product p :: (k2 -> k3 -> Type) -> k2 -> k3 -> Type) Source # 
Instance details

Defined in Data.Bifunctor.Product

Methods

bifmap :: forall (p0 :: k -> k1 -> Type) (q :: k -> k1 -> Type). (p0 :-> q) -> Product p p0 :-> Product p q Source #

BifunctorFunctor (Sum p :: (k2 -> k3 -> Type) -> k2 -> k3 -> Type) Source # 
Instance details

Defined in Data.Bifunctor.Sum

Methods

bifmap :: forall (p0 :: k -> k1 -> Type) (q :: k -> k1 -> Type). (p0 :-> q) -> Sum p p0 :-> Sum p q Source #

Functor f => BifunctorFunctor (Tannen f :: (k2 -> k3 -> Type) -> k2 -> k3 -> Type) Source # 
Instance details

Defined in Data.Bifunctor.Tannen

Methods

bifmap :: forall (p :: k -> k1 -> Type) (q :: k -> k1 -> Type). (p :-> q) -> Tannen f p :-> Tannen f q Source #

class BifunctorFunctor t => BifunctorMonad t where Source #

Minimal complete definition

bireturn, (bibind | bijoin)

Methods

bireturn :: p :-> t p Source #

bibind :: (p :-> t q) -> t p :-> t q Source #

bijoin :: t (t p) :-> t p Source #

Instances

Instances details
BifunctorMonad (Sum p :: (k -> k1 -> Type) -> k -> k1 -> Type) Source # 
Instance details

Defined in Data.Bifunctor.Sum

Methods

bireturn :: forall (p0 :: k0 -> k10 -> Type). p0 :-> Sum p p0 Source #

bibind :: forall (p0 :: k0 -> k10 -> Type) (q :: k0 -> k10 -> Type). (p0 :-> Sum p q) -> Sum p p0 :-> Sum p q Source #

bijoin :: forall (p0 :: k0 -> k10 -> Type). Sum p (Sum p p0) :-> Sum p p0 Source #

(Functor f, Monad f) => BifunctorMonad (Tannen f :: (k -> k1 -> Type) -> k -> k1 -> Type) Source # 
Instance details

Defined in Data.Bifunctor.Tannen

Methods

bireturn :: forall (p :: k0 -> k10 -> Type). p :-> Tannen f p Source #

bibind :: forall (p :: k0 -> k10 -> Type) (q :: k0 -> k10 -> Type). (p :-> Tannen f q) -> Tannen f p :-> Tannen f q Source #

bijoin :: forall (p :: k0 -> k10 -> Type). Tannen f (Tannen f p) :-> Tannen f p Source #

biliftM :: BifunctorMonad t => (p :-> q) -> t p :-> t q Source #

class BifunctorFunctor t => BifunctorComonad t where Source #

Minimal complete definition

biextract, (biextend | biduplicate)

Methods

biextract :: t p :-> p Source #

biextend :: (t p :-> q) -> t p :-> t q Source #

biduplicate :: t p :-> t (t p) Source #

Instances

Instances details
BifunctorComonad (Product p :: (k -> k1 -> Type) -> k -> k1 -> Type) Source # 
Instance details

Defined in Data.Bifunctor.Product

Methods

biextract :: forall (p0 :: k0 -> k10 -> Type). Product p p0 :-> p0 Source #

biextend :: forall (p0 :: k0 -> k10 -> Type) (q :: k0 -> k10 -> Type). (Product p p0 :-> q) -> Product p p0 :-> Product p q Source #

biduplicate :: forall (p0 :: k0 -> k10 -> Type). Product p p0 :-> Product p (Product p p0) Source #

Comonad f => BifunctorComonad (Tannen f :: (k -> k1 -> Type) -> k -> k1 -> Type) Source # 
Instance details

Defined in Data.Bifunctor.Tannen

Methods

biextract :: forall (p :: k0 -> k10 -> Type). Tannen f p :-> p Source #

biextend :: forall (p :: k0 -> k10 -> Type) (q :: k0 -> k10 -> Type). (Tannen f p :-> q) -> Tannen f p :-> Tannen f q Source #

biduplicate :: forall (p :: k0 -> k10 -> Type). Tannen f p :-> Tannen f (Tannen f p) Source #

biliftW :: BifunctorComonad t => (p :-> q) -> t p :-> t q Source #